terça-feira, 22 de janeiro de 2019










x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D




x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D






x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D






x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D






Carga elétrica (AO 1945: carga eléctrica) é uma propriedade física fundamental que determina as interações eletromagnéticas. Esta carga está armazenada em grande quantidade nos corpos ao nosso redor, mas a percepção dela não ocorre facilmente. Convenciona-se a existência de dois tipos de carga, a positiva e a negativa, que, em equilíbrio, são imperceptíveis. Quando há tal igualdade ou equilíbrio de cargas num corpo, diz-se que está eletricamente neutro, ou seja, está sem nenhuma carga líquida para interagir com outros corpos. Um corpo está carregado eletricamente quando possui uma pequena quantidade de carga desequilibrada ou carga líquida. Objetos carregados eletricamente interagem exercendo forças, de atração ou repulsão, uns sobre os outros. A unidade de medida da grandeza carga elétrica no Sistema Internacional de Unidades é o coulomb, representado por C, que recebeu este nome em homenagem ao físico francês Charles Augustin de Coulomb.[1]
Entre partículas elétricas existem forças gravitacionais de atração devido às suas massas e forças elétricas devidas às suas cargas elétricas. Nesse caso, as forças gravitacionais podem ser desprezadas, visto que a massa de uma partícula é ínfima. A força gravitacional só é perceptível quando há a interação entre corpo de massas de grandes proporções, como a Terra e a Lua, por exemplo.
Os átomos são constituídos por prótonselétrons e nêutrons. Os prótons e os elétrons possuem cargas elétricas iguais em módulo, enquanto que os nêutrons e os fótons são eletricamente neutros. Por mera convenção define-se que os prótons possuem uma carga elétrica elementar de uma unidade positiva, representada por +e, e também que os elétrons têm uma carga elétrica negativa, expressa por -e.
Quantização da carga. Nas colisões entre partículas a altas energias são produzidas muitas outras novas partículas, diferentes dos eletrões, protões e neutrões. Todas as partículas observadas têm sempre uma carga que é um múltiplo inteiro da carga elementar  Assim, a carga de qualquer objeto é sempre um múltiplo inteiro da carga elementar.
Nas experiências de eletrostática, as cargas produzidas são normalmente equivalentes a um número muito elevado de cargas elementares. Por tanto, nesse caso é uma boa aproximação admitir que a carga varia continuamente e não de forma discreta.
Conservação da carga. Em qualquer processo, a carga total inicial é igual à carga total final. Nos casos dos fenómenos em que existe transferência de eletrões entre os átomos, a conservação de carga é evidente. Mas nos casos de criação de novas partículas não teria que ser assim, de facto em todos os processos observados nos raios cósmicos, e nos aceleradores de partículas, existe sempre conservação da carga, ou seja, sempre que uma nova partícula é criada, é também criada uma outra partícula com carga simétrica.

    Lei de Coulomb

    Ver artigo principal: Lei de Coulomb
    Essa lei estabelece que "a força de atração ou repulsão entre dois corpos carregados é diretamente proporcional ao produto de suas cargas e inversamente proporcional ao quadrado da distância".[2] Pela lei de Coulomb, duas cargas elétricas pontuais de 1 coulomb separadas de um metro exercem uma sobre a outra uma força de 9 × 109 N, isto é, aproximadamente o peso de 900 000 toneladas. O coulomb é, portanto, uma unidade de ordem de grandeza elevada para exprimir quantidades de cargas estáticas e utilizam-se geralmente seus sub-múltiplos microcoulomb (μC) ou nanocoulomb (nC).
    Outras unidades de medida de carga elétrica, usadas em situações especiais, são:

    Força entre cargas[editar | editar código-fonte]

    Duas cargas pontuais, separadas por uma distância r.
    No século XVIII Benjamin Franklin descobriu que as cargas elétricas colocadas na superfície de um objeto metálico podem produzir forças elétricas elevadas nos corpos no exterior do objeto, mas não produzem nenhuma força nos corpos colocados no interior.
    No século anterior Isaac Newton já tinha demonstrado de forma analítica que a força gravítica produzida por uma casca oca é nula no seu interior. Esse resultado é consequência da forma como a força gravítica entre partículas diminui em função do quadrado da distância.[3]
    Concluiu então Franklin que a força elétrica entre partículas com carga deveria ser também proporcional ao inverso do quadrado da distância entre as partículas. No entanto, uma diferença importante entre as forças elétrica e gravítica é que a força gravítica é sempre atrativa, enquanto que a força elétrica pode ser atrativa ou repulsiva:
    • A força elétrica entre duas cargas com o mesmo sinal é repulsiva.
    • A força elétrica entre duas cargas com sinais opostos é atrativa.
    Vários anos após o trabalho de Franklin, Charles de Coulomb fez experiências para estudar com precisão o módulo da força eletrostática entre duas cargas pontuais.
    Uma carga pontual é uma distribuição de cargas numa pequena região do espaço.
    lei de Coulomb estabelece que o módulo da força elétrica entre duas cargas pontuais é diretamente proporcional ao valor absoluto de cada uma das cargas, e inversamente proporcional à distância ao quadrado
    onde  é a distância entre as cargas,  e  são as cargas das duas partículas,  é uma constante de proporcionalidade designada de constante de Coulomb, e  é a constante dielétrica do meio que existir entre as duas cargas. A constante dielétrica do vácuo é exatamente igual a 1, e a constante do ar é muito próxima desse valor; assim, se entre as cargas existir ar,  pode ser eliminada na equação.[4]
    No sistema internacional de unidades, o valor da constante de Coulomb é:
    Outros meios diferentes do ar têm constantes dielétricas K sempre maiores que o ar; consequentemente, a força elétrica será mais fraca se as cargas pontuais forem colocadas dentro de um meio diferente do ar.[4]

    Campo elétrico[editar | editar código-fonte]

    Uma forma diferente de explicar a força eletrostática entre duas partículas com carga consiste em admitir que cada carga elétrica cria à sua volta um campo que atua sobre outras partículas com carga. Se colocarmos uma partícula com carga  num ponto onde existe um campo elétrico, o resultado será uma força elétrica ; o campo elétrico define-se como a força por unidade de carga:[5]
    Consequentemente, o campo elétrico num ponto é um vetor que indica a direção e o sentido da força elétrica que sentiria uma carga unitária positiva colocada nesse ponto.
    Campo elétrico produzido por uma carga pontual positiva Q e representação do campo usando linhas de campo.
    De forma inversa, se soubermos que num ponto existe um campo elétrico , podemos calcular facilmente a força elétrica que atua sobre uma partícula com carga , colocada nesse sítio: a força será . Precisamos apenas de conhecer o campo para calcular a força; não temos de saber quais são as cargas que deram origem a esse campo. [4] No sistema SI, o campo elétrico tem unidades de newton sobre coulomb (N/C).
    Como vimos, a força elétrica produzida por uma carga pontual positiva  sobre uma segunda carga de prova positiva é sempre uma força repulsiva, com módulo que diminui proporcionalmente ao quadrado da distância. Assim, O campo elétrico produzido por uma carga pontual positiva  são vetores com direção e sentido a afastar-se da carga, como se mostra no lado esquerdo da figura ao lado.
    Uma forma mais conveniente de representar esse campo vetorial consiste em desenhar alguma linhas de campo, como foi feito no lado direito da figura anterior. Em cada ponto, a linha de campo que passa por esse ponto aponta na direção do campo. O módulo do campo é maior nas regiões onde as linhas de campo estão mais perto umas das outras.[4]
    Para calcular o valor do campo elétrico produzido pela carga pontual  num ponto, coloca-se uma carga de prova  nesse ponto e divide-se a força elétrica pela carga . Usando a lei de Coulomb, obtemos o módulo do campo elétrico produzido pela carga :
    onde  é a distância desde a carga , que produz o campo, até o ponto onde se calcula o campo. O sinal da carga  indicará se o campo é repulsivo  ou atrativo .
    O campo elétrico criado por uma única carga pontual é muito fraco para ser observado. Os campos que observamos mais facilmente são criados por muitas cargas; seria preciso somar vetorialmente todos os campos de cada carga para obter o campo total.[4]
    As linhas de campo elétrico produzidas por um sistema de muitas cargas já não serão retas, como na figura anterior, mas poderão ser curvas.

    Carga por indução[editar | editar código-fonte]

    Procedimento usado para carregar dois condutores com cargas iguais mas de sinais opostos.
    Um método usado para carregar dois condutores isolados, ficando com cargas idênticas mas de sinais opostos, é o método de carga por indução ilustrado na figura. Os dois condutores isolados são colocados em contato. A seguir aproxima-se um objeto carregado, como se mostra na figura abaixo. O campo elétricoproduzido pelo objeto carregado induz uma carga de sinal oposto no condutor que estiver mais próximo, e uma carga do mesmo sinal no condutor que estiver mais afastado. [4]
    A seguir, separam-se os dois condutores mantendo o objeto carregado na mesma posição. Finalmente, retira-se o objeto carregado, ficando os dois condutores carregados com cargas opostas; em cada condutor as cargas distribuem-se pela superfície, devido à repulsão entre elas, mas as cargas dos dois condutores já não podem recombinar-se por não existir contato entre eles.
    Na máquina de Wimshurst, usa-se esse método para separar cargas de sinais opostos. Os condutores que entram em contato são duas pequenas lâminas metálicas diametralmente opostas sobre um disco isolador, quando passam por duas escovas metálicas ligadas a uma barra metálica.[4]
    As duas lâminas permanecem em contato apenas por alguns instantes, devido a que o disco roda. Se no momento em que duas das lâminas de um disco entram em contato uma lâmina do disco oposto estiver carregada, essa carga induzirá cargas de sinais opostos nas duas lâminas que entraram em contato. Essas cargas opostas induzidas em duas regiões do disco induzem também cargas no disco oposto, porque nesse disco também há uma barra que liga temporariamente as lâminas diametralmente opostas.
    Em cada disco, após induzirem cargas no disco oposto, as cargas saltam para dois coletores ligados a duas garrafas metálicas; uma das garrafas armazena carga positiva e a outra carga negativa. Quando as cargas acumuladas nas garrafas forem elevadas produz-se uma descarga elétrica entre as pontas de duas barras ligadas às garrafas, ficando descarregadas. Essa descarga elétrica é um pequeno trovão com uma faísca bastante luminosa.[4]
    Os dois discos rodam em sentidos opostos e as duas barras que estabelecem o contato em cada disco e os dois coletores estão colocados de forma a que na rotação de cada lâmina no disco, primeiro seja induzida uma carga que a seguir induz carga oposta no disco oposto e logo passe para o coletor, ficando descarregada e pronta para iniciar outro ciclo.
    A cada ciclo as cargas induzidas aumentam, porque cada lâmina é induzida pelas cargas de várias lâminas no disco oposto. Para iniciar o processo basta com que uma das lâminas tenha acumulado alguma pequena carga por contato com outro corpo como, por exemplo, o ar à volta. A localização inicial dessa lâmina com carga determinará qual das garrafas acumula carga positiva e qual negativa.[4]








    as dimensões categorias podem ser divididas em cinco formas diversificadas.

    tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



    paradox of the system of ten dimensions and categories of Graceli.



    a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



    that is, categories ground the variables of phenomena and their interactions and transformations.



    and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



    but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



    as well as transitions of energies, phenomena, categories and dimensions.

    paradoxo do sistema de dez dimensões e categorias de Graceli.

    um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

    ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

    e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

    mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

    como também transições de energias, fenômenos, categorias e dimensões.







     = entropia reversível

    postulado categorial e decadimensional Graceli.

    TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


    todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
    matriz categorial Graceli.

    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    1] Cosmic space.
    2] Cosmic and quantum time.
    3] Structures.
    4] Energy.
    5] Phenomena.
    6] Potential.
    7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
    8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
    9] thermal specificity, other energies, and structure phenomena, and phase transitions.
    10] action time specificity in physical and quantum processes.




    Sistema decadimensional Graceli.

    1]Espaço cósmico.
    2]Tempo cósmico  e quântico.
    3]Estruturas.
    4]Energias.
    5]Fenômenos.
    6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
    7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
    8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
    9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
    10] especificidade de tempo de ações em processos físicos e quântico.


    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    Matriz categorial de Graceli.


    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             Dl


    Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

    [estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
    trans-intermecânica de supercondutividade no sistema categorial de Graceli.

    EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

    p it = potentials of interactions and transformations.
    Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

    h e = quantum index and speed of light.

    [pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


    EPG = GRACELI POTENTIAL STATUS.

    [pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

    , [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].